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Intermittency and preferential transport of heat 
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The temperature and velocity fields in a round heated jet were investigated in detail. 
Both conventional measurements and conditional measurements (zone averages and 
point averages) were performed. The probability density functions of the lengths of 
turbulent and non-turbulent durations were also measured. Filtered correlation 
measurements show that large-scale turbulent motions were responsible for the bulk 
of momentum and heat transport, and also that small scales were more efficient in 
transporting heat than in transporting momentum. I n  no case was heat transported 
further or more than momentum, however. These results are discussed in detail, 
particularly with regard to the entrainment. Conservation equations for turbulent- 
zone variables and the intermittency factor are derived and a model for some of the 
resulting higher-order correlations is suggested. An exact equation for the intermit- 
tency function is presented. 

1. Introduction 
Free turbulent shear flows have been the subject of considerable experimental 

investigation in the past. The axisymmetric jet, in particular, was investigated as 
early as 1943 by Corrsin, in 1949 by Hinze & Van der Hegge Zijnen and later in more 
detail by Corrsin & Uberoi (1950). Although these experiments have clearly established 
the preferential lateral transport of scalar quantities like heat over vector quantities 
like momentum, as translated into the inequalities which hold between the eddy 
diffusivities for momentum and heat, no light has been thrown upon the possible 
differences in the transport mechanisms. From the discovery of intermittency in free 
turbulent shear flows by Corrsin (1943) and one of the first comprehensive studies of 
this phenomenon, by Corrsin & Kistler (1954), it has been recognized that inter- 
mittency plays a dominant role in such flows. On the one hand, this double statistical 
structure requires that in detailed studies measurements be made either separately in 
turbulent and non-turbulent zones (conditional zone averages) or with respect to the 
interface location (conditional point averages). On another hand, to investigate the 
differences in the transfer mechanisms of heat and momentum, filtered correlation 
measurements uf vf and vrOf need to be made. These measurements obviously require 
simultaneous and continuous signals for the velocity components and temperature; 
techniques to obtain them were developed and used here. Finally, with a view to 
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FIGURE 1. Longitudinal velocity and temperature profiles at jet exit. 
0, 0, vertical; + , 4, horizontal. 

describing and predicting these and similar flows more readily, equations for con- 
ditionally areraged variables are presented. 

2. Flow facility and experimental techniques 
The heated jet facility consists mainly of an airfoil blade fan driven by a 7.5 h.p. 

d.c. motor equipped with an SCR speed control. This discharges through a bank of 15 
finned heaters (22.5kW) into a diffuser whose end cross-section is circular. After 
passing through a settling chamber equipped with screens, a honeycomb and a 16 : 1 
contraction, the axisymmetric circular jet emerges with a diameter D of 22.5 cm into 
the room from the centre of a flat circular plate 124 cm in diameter. From the diffuser 
onwards, the jet facility is insulated throughout and to produce as rectangular as 
possible an exit temperature profile (figure 1) a collar heater (which circulates air at  
the same temperature as that of the jet,) is provided a t  the end of the contraction. In 
order to detect readily any buoyancy effect, the whole unit was installed horizontally. 
At 15 diameters downstream, where both horizontal and vertical profiles were 
measured, no marked departure from symmetry was observed. Nominal values of the 
mean velocity and temperature (above ambient) a t  the jet exit were 25 m/s and 20 "C, 
respectively, while the turbulence intensity was measured to be a little less than 
0.5 yo. This results in a value of 0.23 x lO-3for the ratio g L A O / ( O P )  of buoyant forces 
to inertia forces, showing that the temperature can be treated here as a dynamically 
passive scalar field. Previous measurements by Chevray &, Tutu (1972) in the same 
jet facility and with the same exit conditions demonstrated the virtual identity of 
velocity spectra for the heated (non-isothermal) and isothermal jets. 

To permit simultaneous measurements of temperature and velocity, a special 
instrument was developed for this study and has been reported on earlier by Chevray 
& Tutu (1972). Essentially, it  consists of two hot-wire probes, one of which operates 
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in the low-overheat constant-current mode, thus providing a signal directly propor- 
tional to  the temperature, whereas the other operates in the constant-temperature 
mode, providing a signal with contributions from both the temperature and the 
velocity. Information on the velocity field alone was thus obtained from this second 
hot wire by generating the proper function of temperature given by the first and 
conditioning the signal through an analog circuit. Dynamic compensation was 
provided so that a linear signal representative of the velocity field alone was obtained. 
This technique was adapted to  a cross-wire configuration, thus permitting direct 
measurements of not only the shear stress and heat transfer but also filtered correla- 
tions between velocity and temperature. 

Measurements with inclined wires are based on the response equation 

Ue,, = { Uior 4- k2U:X% (1) 

where U,,, is the instantaneous effective cooling velocity, U,,, and U,, are the com- 
ponents of the velocity vector normal and parallel to  the hot wire, respectively, and 
k is the axial sensitivity. I n  high intensity turbulent flows, besides the axial sensitivity 
k and the sensitivity to the w component of velocity, rectification is an additional 
source of error in conventional measurements with cross-wires. Champagne & Sleicher 
(1 967) have demonstrated that the error in second-order moments due to  k is negative 
and Tutu & Chevray (1 975) have shown that the errors due to  the other two causes 
(independently) are of the same sign. Shear-stress measurements have been corrected 
for the former errors. 

For all the measurements, two hot-wire probes were used. When only the longi- 
tudinal velocity component and the temperature were needed, a standard DISA 
55839 hot-wire probe was used with its stem parallel to  the flow direction. This probe 
has two mutually orthogonal hot-wire sensors that  are perpendicular to the probe 
axis. For simultaneous measurements involving quantities other than those men- 
tioned above, a standard cross-wire 55832 was used with the temperature sensor 
located upstream from and perpendicular to both cross-wires. I n  the constant- 
temperature mode, all sensors were 3.8pm diameter tungsten wires spot welded to the 
prongs. For temperature measurements, the sensor was etched from a spot-welded 
Wollaston wire (10 yo Rh, 90 yo Pt) of diameter 0.635pm. This wire was operated in 
the constant-current mode with a sensor current of 0.15 mA using a Flow Corporation 
1900-1 constant-current anemometer, thus acting as a simple resistance thermometer. 
The sensitivity of direct measurement of the velocity was found to be 0.009 "C(m/s)-l. 
At zero flow velocity the frequency response was good up to  (3 dB down) 5.7 kHz and 
this increased to 10.7 kHz a t  a flow velocity of 5 m/s. 

Throughout this investigation, d.c. coupling has been used for all measurements. 
Although this renders measurements more tedious it is well worth the advantage of 
eliminating the distortion in signals due to low frequency loss encountered in ax .  
coupling. Most measurements were made digitally using Hewlett-Packard 221 2A 
voltage-to-frequency (1 00 000 (pulses/s) V-1) converters and modified (with seven 
digits and a 100s gate time) Hewlett-Packard 5330A preset counters to perform a 
true integration. To minimize scatter, long integration times (5 min) were used. For 
measurements of odd moments and cross-correlations a d.c. electronic splitter was 
built in order to  separate the signal into positive and negative parts for simultaneous 
integration. 
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FIGURE 2. Measurement of the p.d.f. of turbulent and non-turbulent durations. 
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FIGURE 3. Longitudinal velocity - and temperature profiles. 
x / D  = 15, q = 11.3in., CJm = 11*83m/s, 0, = 7~55°C.  

Several general-purpose electronic instruments were used throughout this study. 
More specialized ones were a PAR TDH-9 wave-form eductor, a PAR CW-1 boxcar 
integrator, an HP 32718 correlator, and a Holeywell7610 FM tape recorder equipped 
with phase lock. For the measurement of the probability density function (p.d.f.) of 
the lengths of turbulent and non-turbulent durations a special circuit was built to 
convert the intermittency signal (a random square wave) to a random sawtooth wave, 
the peak of the sawtooth being proportional to the length of the turbulent or non- 
turbulent duration. By giving an appropriate triggering pulse to the HP 37218 
correlator, it was possible to take a single sample of the voltage of the sawtooth wave 
form each time it reached its peak and thus obtain the required p.d.f. Figure 2 shows 
the circuit diagram together with a schematic diagram of the measurement procedure. 



Intermittency and heat transport in a jet 137 

I .? 

? 
0.8 ‘3 

0.4 

0 

FIGURE 4. Velocity and temperature fluctuations at  x / D  = 15. 

3. Gross characteristics : conventional, point and zone averages 
All the measurements were performed a t  x / D  = 15; this choice was dictated more 

by experimental constraints than by any theoretical considerations. While Wygnanski 
& Fiedler’s (1 969) measurements in an isothermal round jet clearly show that complete 
dynamical similarity is reached only about 70 diameters downstream of the jet 
exit, a t  such large x / D  values a much larger exit temperature difference would be 
needed to  permit temperature measurements to  be made. This would obviously 
conflict directly with our requirement that the temperature field be dynamically 
passive. Figure 3 shows the mean longitudinal velocity and temperature profiles 
together with the measurements made by Wygnanski & Fiedler (1  969) in the self- 
preserving region. This relatively flatter distribution of temperature as compared 
with the mean velocity is associated with the preferential transport of heat 
over momentum. It must be mentioned here that the temperature profile has been 
corrected for the contamination due to the influence of the velocity-sensing hot \rire. 
This was done by measuring the mean temperature profiles with the velocity-sensing 
hot wire on and off. The corrections were significant only for r l r i  > 1.65. 

Velocity and temperature fluctuation intensities are presented in figure 4. The 
relatively large value of the temperature fluctuations a t  the tail of the jet is due to 
fluctuations in the ambient temperature. Had we used a.c. coupling (with a cut-off 
at 0.5 Hz, say) these very low frequency ambient temperature fluctuations would 
have been filtered out, and thus might have remained unnoticed. Again, in the outer 
regions of the jet the 0’ profile was obtained by switching the velocity-sensing wire 
off. I n  agreement with Wygnanski & Fiedler’s (1969) measurements, v‘ is everywhere 
less than u’. 

To distinguish between the turbulent and non-turbulent states we must monitor 
a property of the flow which shows a marked difference across the turbuIent/non- 
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turbulent interface. An ideal detector probe would then be a vorticity probe giving 
us a continuous signal proportional to a component of the vorticity. Contrary to what 
is generally thought, a two-wire probe sensitive to aU/ay is not &good sub_8titute for a 
vorticity probe, becaus. althouLh in the turbulent region aD/ay aT/ax,  in the 
non-turbulent region aU/ay = a Vlax. Besides, and more important, instantaneous 
values aUlay and aV/ax are of the same order, so even in the turbulent region aU/ay 
is not a good approximation for the vorticity component. For simplicity, therefore, it 
was decided to use &/at as the basic signal from which to generate the intermittency 
function. Since the velocity fluctuations in the non-turbulent region are of a much 
lower frequency than the fluctuations in the turbulent zone, and since differentiation 
is nothing but selective amplification of high frequency components, &/at should 
provide a good contrast between the turbulent and non-turbulent states. Moreover, 
assuming isotropy and Taylor's hypothesis, &/at can also be visualized as being 
proportional to the square root of turbulent energy dissipation ; thus reasonably good 
detection can be expected from it. 

Since the turbulence detector was designed and built (Chevray & Tutu 1972), many 
other turbulence detection schemes have appeared in the literature (e.g. Thomas 
1973; Paizis & Schwarz 1974). The approach used here is described by Tutu (1976) 
and is basically the same as that used by Kibens (1968). The actual circuit design, 
however, has been improved; in particular, the so-called 'hold time stage' (smoothing 
circuit) works on a completely different principle and is free of the defects and limita- 
tions of the previous hold time stage described by Tutu & Chevray (1976). 

We denote by y the temporal mean of the intermittency function I .  Its  'frequency' 
fy is half the interface crossing rate. Let Q(x, t )  be a fluid-mechanical property, then 
its conventional average a ( x ) ,  its turbulent zone average Qt(x) = 8 and its non- 
turbulent zone average &,(x) = 6 are defined by 

Qn(x) = ljm ( /t:+TQ(x, t )  [l - l(x, t ) ]  dt 
T-+w 

From these three kinds of average, three kinds of fluctuation arise: 

q = Q - Q ,  q t = Q - Q t ,  q n = Q - Q n *  

If P(x, t )  is another fluid-mechanical property, then three kinds of cross-correlation 
suggest themselves : - 

Pq = ( P - P )  CQ-O), Z= (P-Pt) (Q-&t)I/f, 
Lv 

Pnqn = (P-Fn) (Q-Qn)  ( 1 - 1 ) / ( 1 - 1 ) ,  

where, as it is clear, ( - ) denotes the conventional average, ( ;; ) denotes the turbulent 
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FIGURE 5. Distribution of y and f,, across the jet. ---, y in the similarity regon (Corrsin C Kistler 
1954); 0, 0, y and fy/fym8, at x / D  = 15 (from single wire); Q, 4, y and f,,/f,,,,, at x / D  = 15 
(from X-wire). 

zone average and ( N_ ) denotes the non-turbulent zone average. The following relations 
are then easily proved: 

- -  o = rot +(I  -?)on, 
i?- - 

Pi = YPt4rt - + ( I  -Y)Pn41n +r(l -?IF&& +~n&n-pton-pnQt}, 

q2 = ?Z+(l -r)Z + ( I  -r){Qt-QnI2. 
- 

The 'switching terms' in the braces arise from the change in mean level from turbulent 
to non-turbulent regions. Let 

@(x,t) = i ( i (x , t )  +[f(x , t ) l ) ,  $(x,t)  = !dlf(x7t)l - f ( % t ) ) ,  

where 1 is the time derivative of I .  @ ( t )  is then a series of positive-travelling &-functions 
with each pulse occurring a t  the leading edge (downstream crossing, where the 
intermittency funct,ion changes from zero to unity) and p ( t )  is a pulse train with each 
pulse occurring a t  the trailing edge (upstream crossing, where I ( t )  changes fromAunity 
to zero). These functions are used t," define the leading-edge point, average Q of Q 
and the trailing-edge point average Q of Q as 

We can also define a more general type of conditional point average where the detector 
probe (from which fl or $I is derived) and the sampling probe (which supplies &) are 
separated by a certain distance r in space and a time lag 7: 

6(x,  r7 7) = &(x +r, t +7) @(x, W f J x ) .  
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FIUURE 6. P.d.f. of the lengths of turbulent and non-turbulent durations. Z = tl?/r+ t = duration 
of turbulent or non-turbulent zone. A, turbulent durations, 2 = 0.39, uz = 0.45; + , non-turbulent 
durations, 1 = 0-28, u, = 0.34. y = 0.58, x / D  = 15. 

Distributions of the intermittency factory, the burst rate f y  and fY/ fym-  are shown 
in figure 5. Corresponding measurements by Corrsin & Kistler (1954) in the self- 
preserving region are also shown for reference. From this figure, it appears that the 
non-turbulent fluid penetrates relatively deeper in the initial regions than further 
downstream. 

In figures 6 and 7, the times of the turbulent and non-turbulent durations have been 
non-dimensionalized with 7?/~+ in order to yield an estimate of the lengths involved. 
Since the ratio of the standard deviations of these durations to the mean duration is 
greater than 1 in all the four cases, it is clear that there is nothing like an average 
bulge. Consequently, it will be quite meaningless to construct an average shape of the 
bulge from the average lengths y / f ,  and (1 - y)/f, of turbulent and non-turbulent 
durations. Since the p.d.f.’s resemble the shape which one would obtain from a 
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FIGURE 7. P.d.f. of the lengths of turbulent and non-turbulent durations. A, turbulent duratione, 
2 = 0.21, u1 = 0.22; + , non-turbulent durations, I = 0.54, c1 = 0.69. y = 0.28, x ID = 15. 

Poisson model (where the probability of getting a front or a back in the time interval 
dt is 2fydt and which is independent of the existence of the interface in the immediate 
past) it is apparent that the interface is a highly convoluted surface which moves 
in a random manner as was also noticed by Thomas (1973) for the plane turbulent 
wake. 

Figure 8 shows the conditional zone averages of U and 0 across the jet. As expected, 
the fluid in the turbulent zones is seen to be travelling much faster than the fluid in 
the non-turbulent zones. The fact that the temperature is non-zero in non-turbulent 
zones and the gradients of @ and have the same sign is rather curious. I ts  possible 
implications will be discussed in $4. Again, in the turbulent zones the temperature 
distribution is much flatter than U,, showing that the scalar field is ‘mixed’ much 
better than the momentum. Figure 9 shows the fluctuation intensity of the longitudinal 
component of velocity in the two zones. As a comparison with figure 4 shows, for 
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FIGURE 8. Conditional velocity and temperature profiles. 
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FIGURE 9. Zone-averaged longitudinal velocity fluctuation. 

r/r+ > 1.15 the local turbulent intensities in the two zones are less than the un- 
conditioned local turbulence intensity. The maximum value of about 0.7 for ui/gt is 
much less than the maximum value of 1.2 for u’/D, thus showing that the errors due 
to the assumed simple linearized hot-wire response are not as great as the uncon- 
ditioned local turbulence intensity would indicate. The conditional averages of the 
radial component of velocity depicted in figure 10 show that, as expected, the non- 
turbulent fluid is moving inwards on average while the turbulent fluid is moving out- 
wards. Near the tail of the jet, the relatively large positive values of indicate that 
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FIGURE 10. Zone-averaged lateral velocity profile. 
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FIGURE 12. Point-averaged lateral velocity dktribution 
inside the turbulent bulge at x / D  = 15. 

once in a while the turbulent bulges shoot out. Similarly, large negative values of 
deep inside the jet show that the non-turbulent fluid is rushing in to be entrained, 

which suggests that perhaps there are deep crevices in the turbulent/non-turbulent 
interface in regions of high y where significant entrainment is taking place. For large 
radial distances, the strange behaviour of the unconditioned radial velocity comes 
from the effects of rectification and distortion due to high turbulence intensity. 

Leading- as well as trailing-edge velocity (longitudinal component) and temperature 
profiles are presented in figure 1 1 .  They reveal that on average the fluid at the leading 
edge is travelling with the same longitudinal velocity as that at  the trailing edge. That 
the point-averaged temperature profile is flatter than the point-averaged velocity 
profile, giving yet more evidence that the temperature field is more homogeneous in 
the turbulent zones tha? the veloc$ty field, is as expected. The remarkable feature 
here, however, is that a@/& and a@/ar are both positive for y > 0.95. This can be 
explained only if unusually large entrainment is taking place deep inside the jet in 
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FIGURE 13. Cross-correlation between u and 0. 

Flow field Experiment ct Author (s) 
Planar 
Planar 
Planar 
Axisymmetric 
Axisymmetric 
Axisymmetric 
Axisymmetric 
Axisymmetric 
Axisymmetric 

Wake of heated cylinder 
Heated jet 
Heated jet 
Heated jet with tracers 
Heated jet 
Nitrogen jet 
Heated jet 
Heated jet 
Submerged water jet 

0.54 
0.54 

0.42-0.59 
0.74 
0.76 
0.72 
0.70 
0.7 1 

0 * 7 2-0.8 3 

Fage & Falkner 
Reichardt 
Van der Hegge Zijnen 
Van der Hegge Zijnen 
Ruden 
Keagy & Weller 
Corrsin 
Forstall 
Forstall & Gaylord 

TABLE 1. bt for jets and wakes (Mayer & Divorky 1966). 

these regions of high y ,  which is consistent with the earlier observation (figure 10) 
of large negative values of vn in the regions of high y.  

Conditional point measurements with respect to the existence of the interface (at 
the point) a t  a certain time t before or after were made. Radial velocities were measured 
in this way and are plotted in figure 12. They show several interesting features, chief 
among which is that the radial velocities near the interface behave very differently 
on the upstream and downstream sides of the interface. For r / ra  < 1.66 the fluid near 
the leading edge is moving inwards, while beyond r / r t  = 1.66 it is moving outwards. 
I n  contrast, however, the fluid near the trailing edge is on average always moving 
inwards. 
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FIGURE 14. Distribution of turbulent shear and heat transfer. 
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FIGURE 15. Turbulent Prandtl number and correlation coefficients. 

4. Entrainment and preferential transport 
As the experimental results for the average turbulent Prandtl number gt summarized 

in table 1 indicate, the turbulent Prandtl number is very different from unity. It is 
different for different flows and even varies from location to location for the same flow. 
Transport, mechanisms have been proposed (Taylor 1932; Townsend 1956) to explain 
those differences. Recently, Fiedler (1973) suggested an ordinary gradient diffusion 
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mechanism for momentum in a plane turbulent mixing layer. To be consistent with 
this model, however, the shear correlation UV should receive its largest contribution 
from the small-scale region. 

Both the distribution of & and the correlation coefficient RUB are shown in figure 
13. Excluding the tail of the jet, the correlation coefficient between u and 8 is fairly 
constant across the jet and equal to 0.5. Both unconditioned and turbulent zone values 
of the correched turbulent ‘shear stress’ and the lateral component of the turbulent 
heat transfer are plotted in figure 14. That the turbulent zone values are less than the 
conventional averages in the central region is merely due to the ‘switching terms’ 
relating the two being of a certain sign. Since the non-turbulent zone averages for the 
‘shear stress’ and heat transfer were too small (about an order of magnitude less) to 
be measured accurately, they were assumed to be effectively zero. Distributions of 
v o  and have similar shapes and reach their maximum values at approximately 
the same radial location. This suggests that the transport mechanisms for momentum 
and heat are perhaps not radically different. Mean velocity and temperature profiles 
presented earlier show the inflexion points to be roughly a t  r / r i  = 1 e l  whereas &and 
v0 reach a maximum at approximately r/ra = 0.78, thua demonstrating the weakness 
of a simple gradient-type transport mechanism for either momentum or heat. 

The correlation coefficients R,, and R,, are presented in figure 15. As can be seen, 
R,, > R,,, indicating that the turbulent motions are more efficient in transporting 
heat than in transporting momentum. This is in agreement with Corrsin & Uberoi’s 
(1  950) measurements. The actual shape of the curves is nevertheless quite different 
as a result of the considerable scatter in their measurements. The unusually large 
values of R,, near the tail are most probably a result of contamination of the temper- 
ature signal due to the velocity-sensing hot wire. As pointed out by Corrsin & Uberoi 
(1950), the turbulent Prandtl number cr,, defined as the ratio of ‘eddy diffusivities’ for 
momentum and heat, does not have any fundamental physical basis; nevertheless it 
provides an empirical measure of the ratio of momentum to heat transfer. I n  terms of 
the various measured quantities it can be expressed as 

- 

- 

I t s  variation across the jet was computed from least-squares curves fitted to the data. 
I n  qualitative agreement with Hinze & Van der Hegge Zijnen’s (1949) indirect 
measurements, which vary from 0.4 to 0.7, a, is not constant across the jet. I n  view 
of the inadequacy of a simple gradient-type transport mechanism to describe this 
flow, this should not be surprising. 

To compare the sizes of the eddies responsible for the momentum and heat transport, 
filtered correlations uf uf and vf 8, were measured. Since simultaneous signals for u, u 

and 8 were available, this was done by using two identical wave analysers (HP 302A, 
bandwidth = 6Hz) set a t  the same centre-frequencies. I n  order to make measure- 
ments a t  low frequencies, the tape recorder was played back 32 times faster. By 

- - 

definition, of course, - 
uv = v o  = /;Q& 

Since UV and v8 measurements were made independently, the accuracy of the filtered 
correlation measurements could be checked from the above relations. The difference 
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FIGURE 16. Filtered correlations at r / q  = 0.8. 
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(for both UV and v7) was about 9 yo. Later these measurements were repeated with a 
single wave analyser using the identity 

(ur +vr)2- (uf-2p = 4UrVr. 

This method ensures that the centre-frequency is exactly the same. With this method, 
more scatter was noticed a t  high frequencies, otherwise the results were unchanged. 
For these measurements, shown in figure 16, as well as for the spectral density functions 
of u and 6, shown in figure 17, no attempt has been made to convert frequency to wave- 
number since on the one hand Taylor’s hypothesis is not applicable for our case and 
on the other hand the proper convection velocity is strongly dependent on the wave- 
number (Wygnanski & Fiedler 1970) .  

From integration of the distributions in figure 16, UV gets about 70 yo of its value 
from contributions below 1OHz (maximum burst rate) while ve gets about 50%. 
Although the bulk of the transport (for temperature as well as momentum) is accom- 
plished by the large scales, the small scales are more efficient in transporting heat 
than in transporting momentum. Thus gradient-type diffusion is more important for 
heat than it is for momentum transport. Although this may look surprising a t  first, 
the physical reason for this can be ascribed to the fact that the length scale of tem- 
perature mixing is larger than that of momentum mixing. This is because while a scalar 
is conserved during fluid motion (in the absence of molecular diffusivity) momentum 
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FIGURE 17. Spectral density of u and 0 at jet centre-line. z / D  = 15. 

0, velocity, E , ~ /  J E,, dj; Q , temperature, r/ J rdj .  
0 0 

is not, and, since the momentum of a fluid particle associated with these small-scale 
motions is continuously ‘ bleeding ’, the effective length is reduced. 
uf vf drops sharply at  100 Hz, and, since vf Of does not show such behaviour, it was 

suspected that this strange cut-off for u fv f  might be due to distortions in the velocity 
signals caused by high turbulence intensity. In order to investigate this effect on the 
uf vf spectrum, u(t) and O(t - 7) signals a t  the centre-line were assumed to simulate 
undistorted u and v signals. A delay line was used to delay the temperature signal by 
an amount 7 such that the correlation coefficient between u(t) and O(t  - 7) at the centre- 
line was the same as R,, a t  r/r*  = 0.8. The filtered correlation between these two 
signals was measured and served as the ‘reference’ (or true) spectrum. By analog 
means, these simulated signals were then distorted just as a cross-wire would distort 
them under conditions of pure rectification at  r/r$ = 0.8. Filtered correlations were 
measured again and compared with the ‘reference’ spectrum. The effect of pure 
rectification is seen to reduce the correlation uf vf algebraically; this correction is shown 
in figure 16. 

In  the absence of molecular conductivity (and consequently molecular viscosity), 
the conservation equation for temperature reduces to DO/Dt = 0;  indicating that the 
temperature of a fluid particle is indeed conserved during its motion. The only mech- 
anisms responsible for the transport of heat (besides molecular diffusion) are then 
bulk convection and turbulent diffusion (or, more correctly, convection by all scales). 
If molecular viscosity is neglected, the momentum equation reduces to 

- - 
- 

- 

- 

DUIDt = - p-’Vp. 
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Thus it is immediately apparent that the momentum of a fluid particle is not conserved 
during its motion, but is continuously changing. It is also clear that besides bulk 
convection and turbulent diffusion there is an additional mechanism for the mo- 
mentum transport: pressure forces. At first, it could be expected that an additional 
mechanism for transport would make the velocity profile flatter than the temperature 
profile. I ts  effect, however, is just the opposite. Because of continuous ‘bleeding’ of 
momentum from a fluid particle due to pressure forces, the effective mixing length for 
momentum is less than that for heat. Within the turbulent region, therefore, the trans- 
port due to pressure forces is achieved a t  the expense of transport due to convection, 
thus resulting in an overall reduction in the net momentum transport. Momentum, as 
opposed to heat, can be imparted to fluid in the non-turbulent region through pressure 
forces across the interface. Since this results in the momentum being distributed over 
a larger fluid volume (assuming that there is no negative entrainment, heat cannot be 
transported across the turbulent/non-turbulent interface), this also makes the ut 
profile steeper than the ot profile. 

If we restrict our attention to scaies which are small but which are large enough 
that ‘bleeding ’ of momentum and heat due to molecular actions can be neglected, we 
can write down equations derived from the mixing length which give the heat flux 
and turbulent shear stress for individual length scales. This results in a range of 
frequencies where the filtered correlations behave as 

- 
vf e, j - 2 .  

Between 45 Hz and 250 Hz, which on the basis of the mean velocity would correspond 
to length scales between 3 cm and 17 cm (compared with the microscale h = 4.96 mm 
and Kolmogorov length 7 = 0.09 mm), v, 0, does indeed drop asf-2. 

This preferential transport of a scalar must nonetheless be viewed with the proper 
perspective, namely as resulting in a more uniform distribution of the scalar property 
than of the momentum within the flow field. It does not necessarily imply that 
relatively more scalar flux is transported laterally, nor does it imply, as shown by 
Jenkins & Goldschmidt (1 976)) that the scalar is transported much further into the 
ambient fluid. If the round jet is separated into two regions at  the radial location 
where the heat flux and shear stress attain their maxima, all fluid elements in the 
central zone are losing both momentum and heat on average while fluid elements in 
the outer region are gaining momentum and heat. Since in a turbulent jet the longi- 
tudinal momentum and heat flux are constant at  every section, we define 

- 

m = 7,,,/(total longitudinal momentum flux), 

h = q,,,/(total longitudinal heat flux) 

Then the ratio m l h  is a good measure of the relative transport of momentum and heat: 
from our measurements we get 

mlh = 0.94, 

which is much higher than the turbulent Prandtl number of 0.61. If we consider the 
interfaces for velocity and temperature to be the same, the mass flow rate M, which 
carries the momentum is 
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50 ms 

- Time 

FIGURE 18. Simultaneous traces of U ,  V and 0 at r / q  = 1.33. 

while the mass flow rate M, which carries the heat is 

M~ = jomznrpl(t)dr. 

Since I ( t )  < I ,  it is obvious that M, < M,. So, contrary to the implications of the 
turbulent Prandtl number, momentum is distributed over a larger fluid mass than 
heat; this also contributes to making the temperature profile relatively flatter. 

Since the presence or absence of turbulence is independent of the magnitude of a 
passive scalar, there can be only one turbulent/non-turbulent interface, which we 
call the velocity interface. For the temperature, we shall take as the interface the 
boundary across which there is temperature variation, the fluid on one side being 
a t  the ambient temperature. Figure 18 shows simultaneous traces of U ,  V and 0 a t  
one radial location in the jet. The difficulties in establishing the coincidence of tem- 
perature and velocity interfaces with absolute certainty are immediately apparent. 
Because of the contamination of the temperature signal (predominantly in regions 
of reserve flow) due to the influence of the velocity-sensing hot wire, there sometimes 
exist large temperature excursions in the non-turbulent regions. Although these can 
usually be identified as such (because of their peculiar shape), this is not always so, 
which makes the interface comparison difficult. As expected, the temperature signal 
shows a jump across the interface whereas the velocity signal is comparatively smooth. 
By studying a large number of simultaneous U and 0 traces we concluded that, within 
the present uncertainty inherent in our measurement technique, the temperature and 
velocity interfaces are coincident (Chevray & Tutu 1972). 

Another question of interest is that raised by the non-zero value of the mean 
temperature in the non-turbulent region. The velocity sensitivity of the 
temperature-measuring wire (0.009 "C (rn/s)-l) is much too small to account for it. 
Improper detection is a possibility and to investigate it a 50  s (real time) chart record- 
ing was made a t  four radial positions. Direct measurements of the non-turbulent mean 
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Q/@,,,, 

FIGURE 19. Probability density of temperature in non-turbulent 
zones. (a) r / T )  = 0.98. ( b )  r / r t  = 1-33. ( c )  r / q  = 1.69. 

t,emperat,ure, although not exactly the same as those obtained by analog measurements, 
were of the same order and showed the same trend, i.e. decreasing magnitude with 
increasing radius. Another explanation could be that there exists an ambient tem- 
perature gradient in the room owing to some hot air being recirculated. This would 
seem plausible were it not for the fact that the same trend is seen in all reported con- 
ditional measurements of temperature: see Kovasznay & Firasat Ali (1 974, wake of a 
heated flat plate), Fiedler (1 973, plane turbulent mixing layer), Jenkins & Goldschmidt 
(1976, two-dimensional plane jet) and Davies, Keffer & Baines (1975, plane turbulent 
jet). From this and similar studies, there is therefore no compelling argument a t  
present which explains this anomalous temperature signal in the so-called ‘non- 
turbulent zone ’, 
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5. Conservation equations for conditioned variables and modelling 
Although experimentalists developed conditional sampling techniques a long time 

ago (e.g. Kovasznay, Kibens & Blackwelder 1970; Kaplan & Laufer 1968) and demon- 
strated the important role that intermittency plays through the turbulent/non- 
turbulent interface, predictors have not made use of the analogous analytical tech- 
niques. In  fact, only a few papers published recently by Libby (1 975,1976) and Dopazo 
(1 978) make use of equations for the conditioned variables. Because the intermittency 
factor y and the interface crossing rate 2f,, enter naturally into such a description, it is 
to be expected that this approach will represent the physical phenomenon in more 
detail. Whereas Libby obtained a set of simultaneous equations for both the con- 
ventional unconditioned mean and the conditioned variables, we shall develop here 
the conservation equation for the intermittency function and the turbulent zone 
averages of the velocity components and temperature. 

Let U ,  V and W be the instantaneous velocity components in the x, r and q5 direc- 
tions, respectively, in an axisymmetric intermittent turbulent flow. Then, following 
Libby (1975), we postulate the model equation for the intermittency function I ( t )  as 

DI aI ar ar wai - -+ u- +v- +-- = 9, Dt - at ax ar r aq5 (3) 

where 8 is the creation term, i.e. the rate at which, following a fluid particle, I is 
created or destroyed. 8 is not quantitatively, however, the rate of creation of the 
turbulent fluid. They are related only in the sense that if no turbulent fluid is created 
8 = 0. Since I ( t )  is everywhere zero in the non-turbulent region and unity in the tur- 
bulent region, it follows that the only instants when i can be non-zero are those when 
the interface is crossing the spatial position under consideration. It follows then that 
B is a train of pulses, one pulse occurring at each instant at which the interface passes 
through the given location. Assuming that in the turbulent shear flow under con- 
sideration the entrainment is positive a t  every instant and consequently the turbulent/ 
non-turbulent interface always travels into the ambient irrotat'ional fluid, it follows 
that DIIDt and hence 8 are always positive. That is, each time the interface crosses 
a given location at  a certain time ti, a fluid particle in the non-turbulent region passes 
into the turbulent region. Since the interface is sharp, this results in a positive-going 
pulse for 8 a t  t = ti. Because I changes from zero to unity during this fast process, we 
must have 

t i + l A l  1 (DI/Dt)dt = 1, 
&-*At 

where At is an infinitesimal time element. So 8 can be written as a series of Dirac 
delta functions 

It is immediately apparent from (4) that 8 is independent of the speed with which the 
interface travels into the irrotational fluid, and hence independent of the rate of 
entrainment. Consequently, the average rate at  which I is created is not proportional 
to  the rate of creation of the turbulent fluid. Taking the average of (4) gives 

s = 6(t - t l )  +6(t - t z )  +. . . +6(t - ti) +. . . . (4) 

- 
9 = 2f,. (5) 
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Equations (4) and (5) are exact and require only that the instantaneous entrainment 
be positive at all times. Making use of the fact that even for a discontinuous function 

aIT/axk = a(lg)/axk (see appendix), 

= w = 0 a time average of (3) yields 
- - 

for a steady flow with 

where gt and 6 are the turbulent zone averages of U and V ,  and at, vt and wt are the 
fluctuations above the turbulent zone averages. This, then, is the conservation 
equation for the intermittency factor y ;  the last three terms on the left-hand side 
contribute only during interface crossings and will in general have to be modelled. 

For an incompressible flow, the continuity equation in the cylindrical co-ordinate 
system is 

au av law v - +- +-- +- = 0. 
ax ar r a$ r 

Multiplying this by I(t)  and taking the time average gives 

where use has been made of (3) and (5). Neglecting the viscous transport of momentum 
as usual, the momentum equations become 

au au au wau l a p  -+u--+v-+ 
at ax ar r a$ pax a 

av av av wav w2 lap -+u-+p-+ 
at ax ar r a# r p a # ’  (9) 

(10) 
aw aw aw waw vw iiap -+u-+v-+-- +- =--- 
at ax ar r a$ r p r a $ *  

Multiplying (8) by I ( t )  and (3) by at, adding and averaging yields after some algebra 

- -aUt -a& a = 1 Tu 

rut- +yQ- +- (yu;) +-ar(ryu,v,) ax ax ax r 
- y a p  1 T p  

=fy (O+U-2Ut ) - - - - -1 -  pax p ax = 0 . (11) 

Similarly (9) and (10) give 

a =  l a  = Y= 1 aP 
ax r ar r Pr a#’ 
- (u twt~)+-- (rywtwt)+-v twt  = - - I -  

where H is the unconditioned average pressure and p is the fluctuation above it. Since 
uGwt = Gt = 0 for an axisymmetric flow, (13) implies that Iap/a# = 0. But Iap/ax 
- -  



Intermittency and heat transport in a jet 155 

0 

rlrt 

FIGURE 20. Modelling off,,. - , cQ y(  1 - y )  J,/A, c3 = 3447, 
A = q; o,f, (direct measurement). 

and Iaplar should be of the same order as Iap/a#, so it seems appropriate to neglect 
these terms. Neglecting the longitudinal mean pressure gradient and employing the 
boundary-layer approximations, (1 1)  and (1 2) reduce to 

Proceeding as above we can similarly find the equation to be satisfied by the turbulent 
zone-averaged temperature 8, as 

- a8 -aGt i a = A V  

yUt -, +yV - +-- (ryv,6,) -f,(O +O - 28,) = 0. ax ar r ar 

Within a fully turbulent region ( y  = 1, f,, = 0 ) ,  (1  4) and (1 6) reduce to the conven- 
tional Reynolds equations. In  the intermittent region not only is the Reynolds-stress 
term modified but there appears an additional term which arises from a correlation 
of the type and is therefore clearly related to the entrainment. To solve (6), (7) 
and (14) for o,, 

If it is assumed that the interface is not folded on itself, i.e. that the instantaneous 
lateral co-ordinate of the interface at  a given longitudinal location x is a single-valued 
function of r,  then - ay/ar is the probability density function of the interface location. 
Then f, must clearly be proportional to it and from dimensional reasoning we can 

(17) 
write 

Since no combination of the constants c1 and c2 could be found for which (17) re- 
presented the experimental results, it appears that our assumption regarding the 

and y and (1 6) for 8,, we must model the rest of the terms. 

f,, = - (clUTn +cz U t )  ay/ar. 
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L 
FIGURE 2 1. Modelling of modified Reynolds-stress and entrainment terms 

for momentum. cp = 1.011 w 1-0, cs = 0.0169, y = T / q .  

folding of the interface is a poor one. From the limiting values of fy as y tends to 0 
and 1, Libby has suggested 

where we have now just one constant and where A is a length scale of the order of the 
width of the shear flow. As Libby has shown, (18) gives good agreement only in either 
the inner or outer region of the flow. Replacing D by the turbulent zone average, 
however, we obtain good results as shown in figure 20. 

Whereas the dominant modified Reynolds-stress and heat-flux terms can be approxi- 
mated in the usual manner without difficulty, the entrainment terms require separate 
treatment. One of the simplest closures representing these terms is 

fy = C,Y(l -Y) V l A  (18) 

- fy( o+ t7- 2iQ = c p  fy B,, 
-fy(o + o - 2Gt) = c5fy 8, q / r .  

(19) 

(20) 
A V  

For o w  ~z 0.5gt as our measurements indicate, a value of c4 = 1.01 gives an 
excellent fit for the entrainment term as seen in figure 21. For ( Z O ) ,  similar calculations 
were made with c5 = 1.1 and are presented in figure 22. Although the agreement is 
quite good in the inner part, this is not so for large values of r .  This lack of agreement 
is not surprising since our measurements are unreliable in these regions owing to 
contamination of the temperature signal by the velocity-sensing wire. 
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FIGURE 22. Modelling of modified heat-flux and entrainment terms for temperature. c6 = 1.1, 
c7 = 0.0287, y = r/r+ 

6. Concluding remarks 
Within the uncertainties in our measurement technique due to ambient temperature 

fluctuations, contamination of the temperature signal by the velocity-sensing hot 
wire in regions of reverse flow, etc., the velocity and temperature interfaces are 
coincident. There nevertheless exists a distinct possibility of occasional non-coincidence 
of the temperature and velocity interfaces on the basis of this and other previously 
published measurements in free turbulent shear flows. 

From our conditional measurements, fluid particles in the turbulent zones are seen 
to move fast (compared with the mean velocity) and outwards, whereas fluid particles 
in the non-turbulent zones move slowly and inwards. Point measurements with 
respect to the interface suggest that jets of fluid are shot out periodically from the 
central regions, thus greatly increasing the surface undulations of the interface. The 
measurements also suggest that the interface has crevices in zones of high y where 
rapid entrainment is taking place. Probability densities of the lengths of turbulent and 
non-turbulent durations indicate that the interface is a highly convoluted surface 
and that there is nothing like an average turbulent bulge. 

The conventional turbulent Prandtl number is found to vary across the flow with 
a value of 0.61 at the location of maximum shear. Filtered correlation measurements 
show that large-scale turbulent motions are responsible for the bulk of momentum 
and heat transport, and also that small scales are more efficient in transporting heat 
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than in transporting momentum. Consequently, whereas bulk convection cannot be 
neglected for momentum transport, gradient,-type diffusion cannot be neglected for 
heat transport if it is included for momentum transport. 

Conservation equations for turbulent zone averages of the temperature, velocity and 
interniittency factor are derived and a model for some of the resulting terms is sug- 
gested. Under the assumption that the instantaneous entrainment is always positive, 
it is shown that i, the average creation term in the equation for I ( t ) ,  is exactly equal 
to 2fy. From these equations and on the basis of the present measurements, the 
entrainment terms dominate the terms of Reynolds-stress type in the outer regions 
of the jet. 

Special thanks are due to E. E. O'Brien for his help in many capacities throughout 
this study. The financial support of the National Science Foundation under Grants 
GIi30479 and KO40738 is gratefully acknowledged. Partial support from the Japan 
Society for the Promotion of Science (Gakujutsu shinkoo kyookai) while one of the 
authors (RC) was a Visiting Professor a t  the Universities of Hokkaido and Tokyo is 
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We assume an ergodic process 

Here Q(x, t )  is any property which is a t  least continuous in the turbulent and non- 
t,urbulent zones separately and and T, are the turbulent and non-turbulent dura- 
tions, respectively. On the right-hand side of this equation, corresponding to non- 
turbulent regions, the second t,erm is zero. Only terms of the first and third kind will 
be considered in detail. Let ck be the instantaneous component of the interface con- 
vection velocity in the xk direct,ion, then consider one of the terms (say a trailing edge) 
with ti t,he interface crossing time: 

a(IQ) Qt.8. dt = -, 
G k  

where t.s. refers to the burbulent side of the interface. (For a leading edge we should 
have similarly - QfJck . )  For N interface crossings, therefore, 

A v 
(A 2) 

&N 1 N t f + * A t a ( I Q )  
lim - - 

N+m T+m T & N i ? l . f t i - * A t  ax, 
We also have 

a -  a 1  i a  - (QI )  = lim - - /$&I)  dt = lim - - f Qdt ,  
T+w axk T + W T a x k  T I  

At+O 

f&+*At 

a t e -gAt  td - ) A t  

Qdt  + Q dt +. . .), a -! axk Ti Q d t  = ax, ( f t % + * A t  
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with t,, the times corresponding to trailing edges and tzn+l the times corresponding 
to leading edges. In addition, 

so that 

At at, At at, + [ ~ ( t a -  3) &- Q (tl +3) +Q (t4-:) 
At at, 

-& (t, +Ti> ax, +... 

For the case Q = constant, the second term on the right-hand side of these equations 
becomes 

Hence, at a given spatial position, we can expect a large difference between the 
leading- and trailing-edge convection velocities in the direction of the gradient of the 
intermittency factor. Combining (A 1)-(A 3), we obtain a(a)/i?x, = a(IQ)/ax,. 
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